5: Inner Products, Adjoints, Spectral Theorems, Self-adjoint Operators

نویسنده

  • STEVEN HEILMAN
چکیده

Lemma 1.2 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional vector space over a field F, and let T : V → V be a linear transformation. Suppose V has an ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ] β β = diag(λ1, . . . , λn). Lemma 1.3. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two bases for V . Let T : V → V be a linear transformation. Define Q := [IV ] ′ β . Then [T ] β β and [T ] ′ β′ satisfy the following relation [T ] ′ β′ = Q[T ] β βQ −1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Adjoints and Self-Adjoint Operators

Let V and W be real or complex finite dimensional vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there is a transformation L∗ : W → V for which 〈Lv,w〉W = 〈v, Lw〉V (1) holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the adjoint of L. Some of the properties of L∗ are listed below. Proposition 1.1. Let L : V →W be linear. ...

متن کامل

Adjoints and Self-Adjoint Operators Finite Dimensional Case

1 Definition of the Adjoint Let V and W be real or complex finite dimensional vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there is a transformation L∗ : W → V for which 〈Lv,w〉W = 〈v, Lw〉V (1) holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the adjoint of L. Some of the properties of L∗ are listed below. Proposition 1...

متن کامل

A ug 2 00 0 SPECTRAL THEORY OF PSEUDO - ERGODIC OPERATORS

We define a class of pseudo-ergodic non-self-adjoint Schrödinger operators acting in spaces l 2 (X) and prove some general theorems about their spectral properties. We then apply these to study the spectrum of a non-self-adjoint Anderson model acting on l 2 (Z), and find the precise condition for 0 to lie in the spectrum of the operator. We also introduce the notion of localized spectrum for su...

متن کامل

Chapter 10 Spectral theorems for bounded self-adjoint operators on a Hilbert space

Let H be a Hilbert space. For a bounded operator A : H → H its Hilbert space adjoint is an operator A∗ : H → H such that 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ H. We say that A is bounded self adjoint if A = A∗. In this chapter we discussed several results about the spectrum of a bounded self adjoint operator on a Hilbert space. We emphasize that in this chapter A is bounded, there is also a notion o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015